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Abstract Breast cancer is the most common cause of death in women and the second
leading cause of cancer deaths worldwide. Primary prevention in the early stages of
the disease becomes complex as the causes remain almost unknown. However, some
typical signatures of this disease, such as masses and microcalcifications appearing on
mammograms, can be used to improve early diagnostic techniques, which is critical
for women’s quality of life. X-ray mammography is the main test used for screening
and early diagnosis, and its analysis and processing are the keys to improving breast
cancer prognosis. As masses and benign glandular tissue typically appear with low
contrast and often very blurred, several computer-aided diagnosis schemes have been
developed to support radiologists and internists in their diagnosis. In this article, an
approach is proposed to effectively analyze digital mammograms based on texture
segmentation for the detection of early stage tumors. The proposed algorithm was
tested over several images taken from the digital database for screening mammogra-
phy for cancer research and diagnosis, and it was found to be absolutely suitable to
distinguish masses and microcalcifications from the background tissue using morpho-
logical operators and then extract them through machine learning techniques and a
clustering algorithm for intensity-based segmentation.
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1 Introduction

One in every eight deaths worldwide is caused by cancer. Cancer is the second leading
cause of death in developed countries and the third leading cause of death in devel-
oping countries. In 2009, about 562340 Americans died of cancer, more than 1500
people a day. Approximately 1479350 new cancer cases were diagnosed in 2009. In
the United Sates, cancer is the second most common cause of death and accounts for
nearly 1 in every 4 deaths [1]. Furthermore, breast cancer is the most common cause
of death in women and the second leading cause of cancer deaths worldwide (after
lung cancer) [2], and the chance of developing invasive breast cancer at some time in a
woman’s life is about 1 in 8 (12.5 %) [3]. Approximately 182000 new cases of breast
cancer are diagnosed and 46000 women die of breast cancer each year in the United
States [4].

Until now, there is no effective way to prevent the occurrence of breast cancer.
Therefore, as it is well known, early detection is the first crucial step towards breast
cancer diagnosis and treatment. In terms of medical diagnosis and screening tech-
niques, X-ray mammography is currently the most common technique used in clini-
cal practice due to its low cost and accessibility. Although screening mammography
presents some limitations, such as low reliability on dense breast of young women or
women who underwent a surgical intervention, it has been recommended as the most
effective method for early detection of breast cancer as it provides high sensitivity
on fatty breast and excellent performance on microcalcification detection [5]. As a
result, a large number of mammograms need to be examined by a limited number of
radiologists, resulting in misdiagnoses due to human errors by visual fatigue.

To improve the accuracy and efficiency of mammogram examination, computer-
aided diagnosis (CAD) has been introduced in the screening process to support radi-
ologists and internists in their diagnosis. In general, CAD systems are used to support
the interpretation of medical images and two main schemes can be found: computer-
aided detection (CADe) and computer-aided diagnosis (CADx); CADe is focused on
the identification of the location of suspect regions while CADx is targeted to charac-
terization (i.e., malignancy versus benignity) [2]. Currently, several image-processing
methods for the detection of tumors in mammograms have been proposed. Various
technologies such as fractal analysis [6], discrete wavelet transform, and Markov
random field have been used. Li et al. [7] proposed a multiple circular path convo-
lution neural network architecture that has been designed for the analysis of tumor
and tumor-like structures, and Chan et al. [8] reported a two-stage adaptive density-
weighted contrast enhancement algorithm for tumor detection in mammograms.

It is well known that the best prevention method is early detection, but primary pre-
vention in early stages of the disease becomes complex as the causes remain almost
unknown. Nevertheless, some typical signatures of this disease can be targeted such
as masses and microcalcifications appearing on mammograms, which can be used to
improve early diagnostic techniques. As a result, most of the previously mentioned
techniques focused on two types of breast cancer: microcalcifications and masses.
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In this study, a CADe scheme is proposed to effectively analyze digital mammo-
grams based on texture segmentation for the detection of early stage tumors. The
proposed algorithm was tested over several images taken from the digital database for
screening mammography for cancer research and diagnosis, and it was found to be
absolutely suitable to distinguish masses and microcalcifications from the background
tissue using morphological operators and then extract them through machine learning
techniques and the clustering algorithm for intensity-based segmentation.

2 Method

The main purpose of a breast cancer CADe scheme is to separate suspicious regions
that may contain masses from the background parenchyma (i.e., the characteristic
tissue of an organ, which is distinguished from associated connective or supporting
tissues) [3—7]. In other words, such schemes divide the mammogram into several
non-intersecting regions and then extract regions of interest where suspicious mass
candidates from the ultrasound image can probably be found. As explained in [2],
architectural distortion, which produces alterations on the density, shape, and mar-
gins, is a reliable indicator of malignant changes, especially when it is manifested
through visible lesions such as mass, asymmetry, or microcalcifications. Thus, image
segmentation is essential to preserve the sensitivity and accuracy of the entire mass
detection and classification system.

The proposed technique is based on feature extraction through texture analysis for
the identification and discrimination of suspicious areas related to cancer and benign
tumors, as well as microcalcifications. As texture-based analysis methods characterize
texture in terms of the extracted features, segmentation depends not only on the images
under study but also on the aim for which the image texture analysis is used [6].

The performance of various methods reported in the literature has been measured
on different data sets, and it has also been demonstrated that the database by itself sig-
nificantly influences the performance of the algorithms [5]. The proposed algorithm
deals with eight-bit gray scale images obtained from the digital database for screening
mammography (DDSM) [9, 10]. Abnormalities in the breast tissue, whether benign
or malign, are typically found in the form of clusters of cells, which in the image
means that abnormalities are represented by regions with their own properties and, in
an early stage of the examination, these areas are just slightly different from the rest
of the image. These texture and morphological differences in the abnormality region
allow identification, analysis, discrimination, and extraction of the abnormal region.
Nevertheless, such abnormal regions are not always clear to the naked eye and the aid
of a more powerful tool is highly convenient.

Once it has been segmented, an image can be represented in two different ways:
external and internal. External representation is used when desired shape characteris-
tics are to be highlighted while internal representation is useful to focus on regional
properties (i.e., texture and color) [11]. In the case of CAD systems, external represen-
tation is suitable to successfully diagnose the segmented regions through the analysis
of morphological and geometrical properties. In this particular case, a CADe system
is being proposed to identify abnormal regions within mammograms. This implies
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that we are mainly focused on the internal representation as our purpose is the sep-
aration (extraction) of the objects of interest from the background based on texture
segmentation (abnormalities).

The concept of transition regions, which refers to those regions located between the
background and the object of interest, was first reported by Gerbrands, in 1988 [12].
From that moment a large number of studies have included this concept into image
processing, especially into image segmentation. According to the definitions found
in the literature, the following are the three main properties of the transition regions,
which have to be taken into account for our purpose [12,13]:

The transition regions have a certain width consisting of several pixels, even around
step edges.

The transition regions cover around the objects as they represent the boundary
between the objects and the background.

Changes in the gray scale at the transition regions, which are frequent and diverse
in real medical images, contain essential information on the transition regions them-
selves.

According to the properties of the transition regions, especially the one referring
to the several changes in the gray scale in a single transition region, it can be stated
that entropy-based algorithms exhibit a more efficient performance in terms of texture
segmentation instead of gradient-based algorithms [13].

Entropy, which is, in general, a statistical measure of randomness, was first defined
to be used in image processing by Pun, in 1980 [14]. Despite several proposals to
consider both high-order histograms and entropies of new images generated from
the properties of the original input image to obtain additional information [15], the
proposed algorithm only considers the first-order entropy, which makes it easier to
implement and computationally cost effective.

The definition of entropy proposed by Pun was based on Shannon’s theory of com-
munication, and it considers the operation over the full image as it is calculated from
the first-order histogram, returning a scalar value as a measure of the image texture.
In this particular case, we have drawn on the local entropy as the first stage of the
proposed algorithm. Unlike the entropy proposed by Pun, the local entropy is defined
for a small region £2; by a window size (M}, x Nj) within the input image, as follows:
[11,13]

L—1
E(2) =— ) P;log(P)), ()
=0
where
P=— 2)
T My x N

is the probability of gray scale i that appears in the neighborhood £2; and n; is the
number of pixels with gray scale i in the neighborhood. L is the maximal gray scale,
and E (§2y) is the local entropy of the neighborhood £2.
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Fig. 1 General schematic of the proposed algorithm

Figure 1 shows the main stages of the proposed algorithm: input image sharpening,
identification of the background texture, identification of the object’s texture, and dis-
play of the results. As can be noticed in the block diagram, the regions of interest are
identified and then extracted using both the original input image and the background
texture as a contrast mask. This means that what it is identified as an abnormal region
in the top mask stage depends on what was previously identified as the background
region in the rough mask stage.

In this sense, understanding that image sharpening as a pre-processing stage is
used only to enhance the details in the input image, the stages related to the back-
ground/object’s texture segmentation and extraction become the most important within
the process. They will be further explained in more detail.

Figure 2 shows the internal structure of the stage where the background texture
is identified and then extracted. The process in this stage starts with the calculation
of the local entropy of the image using Eqgs. 1 and 2. This stage has two inputs: the
high-pass filtered image and the gray value of the threshold. The latter is an input var-
iable of the global process. According to the first-order processing mentioned above,
a window size of 9 x 9 was used to compute the local entropy and then extract the
properties of the local textures based only on the adjacent (surrounding) neighbors of
the current pixel of the image. The next stage consists of obtaining a binary image via
thresholding.

Once the image has been thresholded, a primitive version of the background texture
mask is available. However, this image cannot be used for further processing yet. It is
worth mentioning that after thresholding, the image remains as a binary image, which
means that the textures are treated as binary region masks instead of treating them as
gray scale regions.

Consequent stages constitute the morphological treatment of the image and deter-
mine the final version of the background texture. The area opening stage consists of
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Fig. 2 Internal structure of the stage where the background texture is extracted

[Mask of the Background Texture ]

Non-Background
Image
Disregard the
r Background Region

b S

Separation of

Object/Background Regions

Local Texture
(9%9 Window)
Matrix Re-scaling
(Grayscale Domain)

Morphollogical Removing
of “Small” Objects

Morphological
Area Opening \\/

Image Thresholding
(Locally-computed Threshold)

Segmented Image
&
Extracted Object

Extraction of Textures

Fig. 3 Internal structure of the stage where the object’s texture is extracted

removing the “small” objects from the binary image to clean the background texture.
To follow the transition regions more approximately, edge smoothing is performed by
a sequential process of dilation followed by erosion using a square mask of dimensions
9 x 9. Finally, isolated background pixels are connected by filling the holes within the
background texture. Once this process has been completed, a binary image containing
the background texture mask is available for further stages. The background texture
mask obtained at the end of this stage is only a partial result that will be used for
further processing.

The next stage, in which the object’s texture is identified and then both the back-
ground and object’s textures are separated, has two inputs: the original input image
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and the binary image of the background mask obtained in the previous stage. Figure 3
shows the internal process of this stage, which starts using the binary image resulting
from the previous stage to obtain an image containing non-background information.
Texture analysis is performed over the non-background region by computing the local
entropy with a similar window as that used in the previous stage. The disregarded
region of the original image (background) does not contribute to further results as the
local entropy is minimal for regions consisting of pixels with the same gray value [15].

Unlike the previous stage, the thresholding of the non-background region in the
current stage is performed using a locally computed threshold considering the image
where the background is disregarded. The morphological treatment of the binary image
obtained after thresholding is similar to that performed in the previous stage. Once the
binary mask of the object’s texture is obtained, both regions and their contours can be
reconstructed and displayed.

3 Test and Results

This section details the results of the automatic detection of a breast cancer mass in
mammograms using machine learning techniques and clustering. In this analysis, the
first procedure consists of determining the seed regions. When dealing with mammo-
grams, it is known that pixels of tumor regions tend to have the maximum allowed
digital value. Based on this information, morphological operators such as dilation and
erosion are used to detect possible clusters which contain masses [16—19]. Image fea-
tures are then extracted to remove clusters that belong to background or normal tissue
as a first cut. Features used here include cluster area and eccentricity.

The images studied in this study belong to the DDSM database [9, 10]. These images
are already analyzed, classified, and hand-labeled, but they are still a good indicator
of the adequacy and effectiveness of the proposed algorithm. Figure 4 shows the
main results of the segmentation and extraction process. Figure 4a shows the original

Fig.4 Successful segmentation and extraction processes: (a) original image, (b) segmented image, and (c)
extracted image. Volume 02—Case 0018—Left CC [9,10]
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image, which is already labeled in the abnormality region, while Fig. 4b and ¢ shows
the segmented and extracted images, respectively, for a specific relative gray level of
0.78.

The extracted abnormality shown in Fig. 4c has an area of 216 pixels while the
hand-labeled region has an area of ~250pixels (in the data set). A measure of effi-
ciency for the proposed algorithm arises when the extracted region and the original
hand-labeled region are compared to each other and to the original image using the
following expressions:

e = | AHand-marked — AExracted| x 100 % )

AHand-marked

o = |AHand-marked - AExtraCted| % 100 % (4)

A Total

Equation 3 relates the area of the hand-labeled region directly to the extracted area,
without considering the size of the original image. On the other hand, Eq. 4 calculates
the difference between the relative areas (i.e., hand-labeled and extracted) with respect
to the total size of the original image. In this particular case, from Eq. 3, a relative
error of about 13.6 % is generated after the segmentation and extraction processes
with respect to the hand-labeled area are done. On the other hand, considering the
total size of the original image (359 x 205 pixels), the extracted area is a good match
to the hand-labeled region as they represent 0.29 % and 0.33 % of the total area of the
original image, respectively, which means that, from Eq. 4, an error of ~0.04 % is
generated for the extracted region with respect to the complete original image.

As explained in the previous section, two main parameters define the segmentation
and extraction processes: the relative gray level of the pixels in the abnormality region
and the size of the reference region for the “small” areas to be removed from the
binary texture image. According to these two parameters, a successful or unsuccessful
detection of the abnormality can be performed, which means that even though the
segmentation is performed and the different textures are identified, it is possible that
the extraction will not be carried out satisfactorily and no cluster of suspicious cells
can be discriminated.

Furthermore, it was found that it is also possible for the proposed algorithm to
identify suspicious regions that were not labeled in the DDSM images, as shown in
Fig. 5. This does not mean that there is necessarily another abnormal region, but it
means that a region with similar texture as that labeled was found; it will be the role
of a radiologist or analyst to find the relevant evidence through the pertinent tests and
then to diagnose the identified additional texture.

In a similar way to the previous case, the extracted region of the well-identified
abnormality has an area of 696 pixels while the hand-labeled region has an area of
~650 pixels, which means that, from Eq. 3, a relative error of ~7 % is generated after
the segmentation and extraction processes for a reference relative gray level of 0.73.
On the other hand, the additional region that was found has an area of 125 pixels and
is located slightly out of the hand-labeled region. As in the previous case, considering
the total size of the original image (364 x 238 pixels), the extracted area is in good
agreement with the hand-labeled region as they represent 0.8 % and 0.75 % of the total
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Fig.5 Successful segmentation and extraction processes in addition to the identification of another region
with similar texture: (a) original image, (b) segmented image, and (c) extracted image. Volume 02—Case
0082—Left CC [9,10]

area of the original image, respectively, which means that, from Eq. 4, an error of
~0.05 % is generated for the extracted region with respect to the complete original
image.

In both cases, the error is mainly produced at the stage of the algorithm where the
edges are smoothed. Edge smoothing is performed by creating diamonds as the mor-
phological structuring elements to better preserve the structural original properties of
the elements in the image but it can also be performed using other geometries (i.e.,
square, rectangle, disk, or octagon, among others). These other geometries may pro-
duce a smaller error but the structural properties will be altered in a greater way than
when diamonds are used: diamonds allow preserving the original structural properties
in the extracted abnormality so this region is not only identified but it also maintains
most of the original form.

In terms of the reference gray level, it was observed from the experimental results
that this value strongly determines the amount of area that is identified and then
extracted. Figure 6 shows the segmented and extracted images for reference gray lev-
els of 0.77, 0.80, and 0.83. It can be clearly noticed that as the reference gray value
increases, the amount of extracted area decreases but also that a cleaner extraction of
the abnormality in the hand-labeled area is performed.

In a similar way to both previous cases, the hand-labeled region has an area of
~2533 pixels. For reference gray levels of 0.77, 0.80, and 0.83, extracted areas of
2412 pixels, 970pixels, and 328 pixels were obtained, which means that, from Eq. 3,
relative errors of approximately 4.8 %, 61.7 %, and 87 % are generated after the seg-
mentation and extraction processes, respectively. Taking into account the total size of
the original image (189 x 365 pixels), the extracted areas represent 3.5 %, 1.41 %, and
0.48 % from the total image, while the hand-labeled area represents 3.67 %, which
means that, from Eq. 4, errors of approximately 0.17 %, 2.26 %, and 3.19 % are gener-
ated for the extracted region with respect to the complete original image. It is signif-
icant to highlight that although the texture of the abnormality region is successfully
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Fig.6 Segmentation and extraction for several reference gray levels: (a) original image. Segmented images
for reference gray levels: (b) 0.77, (c) 0.80, and (d) 0.83. Extracted images for reference gray levels: (e)
0.77, (f) 0.80, and (g) 0.83. Volume 11-Case 1236—Right CC, [9,10]

identified and extracted, results shown in Fig. 6 reflect the strong sensitivity of the
algorithm to the value of the reference gray level.

From the obtained results, it can also be clearly noticed that large errors result from
the direct comparison between the extracted and hand-labeled regions (i.e., Eq. 3).
This is due to the small size of the concerned regions, which means that very small
differences between the extracted and hand-labeled regions will result in large errors.
If both region (the extracted and the hand-labeled) are referred to the total size of
the original image (i.e., Eq. 4), it is clear that the error decreases. Equation 4 allows
performing a more objective comparison between the extracted and the hand-labeled
regions as it considers how small the abnormal region is when compared to the total
size of the original image.

Figure 7 shows the evolution of the relative error as obtained from Eq. 4 for the three
previous cases having several reference gray levels. In terms of the size of the extracted
region, as it is also shown in Fig. 6, as the reference gray level increases, the amount of
extracted area decreases; it was found from Fig. 7a and c that it decreases with approx-
imately a quadratic dependence on the reference gray value. In the particular case of
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Fig. 8 Surface of the correlation coefficient between the detected area and labeled image for different gray
levels in (a) microcalcification and (b) mass

Fig. 7b, the algorithm first extracted a larger region than that of the hand-labeled region
and then behaves in a similar way to the other two studied cases (i.e., as the reference
gray level increases, the extracted area decreases). This allows estimating the value of
the reference gray level for which the extracted area becomes approximately the same
as the hand-labeled area, and thus, optimizing the processing for a particular region
where the abnormality has been identified.

The central graph in Fig. 8 shows the correlation coefficient between the area
detected by our algorithm and the area in the labeled image for different gray lev-
els while the reference area remains constant. By changing only the reference gray
level, a filter-like response is obtained for the correlation coefficient, which means
that there are specific gray levels for which a greater similitude between the processed
and labeled images is achieved. To understand the effect of each variable involved in
the process, a characterization of the reference area is performed for several reference
gray levels.

The insets in Fig. 8 show the correlation coefficient between the identified abnor-
mality and the labeled image as a surface that is now a function of the reference areas.
Several regions can be identified on the surface, and the most adequate input parame-
ters resulting in the highest correlation coefficient can be now set for a particular gray
level. Figure 8a shows the correlation for microcalcifications, while Fig. 8b shows the
correlation for the mass. By comparing Fig. 8a and b, a different behavior in the slope
of the correlation curve for the case of microcalcifications and masses can be observed.
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4 Conclusions

Breast cancer is one of the major causes of death among women. Early diagnoses
through regular screening and timely treatments have been demonstrated as the best
prevention method for cancer. In this article, we have presented a novel approach to
identify the presence of breast cancer mass in mammograms. The proposed study uti-
lizes morphological operators for segmentation and clustering for clear identification
of abnormalities such as masses and microcalcifications.

Our results show that for lower values of the reference gray level, most of the abnor-
mality is identified and extracted, but some other regions with similar textures also
appear. On the other hand, for larger values of the reference gray level, these regions
with similar textures gradually disappear from the image but the abnormality region
is identified and discriminated with a smaller area.

According to this, an adequate value of the reference gray level is required to achieve
a successful segmentation and extraction of the suspicious regions while they are dis-
criminated in a clear and effective way, avoiding the extraction of non-relevant regions
with similar textures as much as possible. In this regard, it has been demonstrated that
the optimum value of the reference gray level can be estimated through the evolution
of the relative error with respect to the total size of the image. Nevertheless, in terms
of medical diagnostic support, this could not be the best option as it is preferable
to identify suspicious regions along with non-relevant regions than to skip them and
then omit important information related to possible abnormal regions. The proposed
algorithm allows robust and versatile processing by only adjusting the reference gray
level into an appropriate threshold value for the algorithm.

The behavior exhibited by the algorithm in the optimization procedure is directly
related to the size of the reference area for the small regions to be removed after
segmentation. In the case of microcalcifications, it can be clearly noticed that the
correlation coefficient increases when large areas are removed, which means that the
information corresponding to small areas, including those where the calcifications
are located, still remain in the picture; and that, in the case of mass, the correlation
coefficient increases when small areas are removed, which means that the information
corresponding to large areas remains in the picture and can be discriminated later.
This difference can not only be used to determine the best conditions of the input
parameters but also for differentiating between microcalcification and mass, resulting
in an effective image analysis for convenient assistance to medical diagnosis.
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